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Thread/paper- and paper-based microfluidic
devices for glucose assays employing
artificial neural networks

This paper describes the fabrication of and data collection from two microfluidic devices:
a microfluidic thread/paper based analytical device (�TPAD) and 3D microfluidic paper-
based analytical device (�PAD). Flowing solutions of glucose oxidase (GOx), horseradish
peroxidase (HRP), and potassium iodide (KI), through each device, on contact with glucose,
generated a calibration curve for each platform. The resultant yellow-brown color from
the reaction indicates oxidation of iodide to iodine. The devices were dried, scanned,
and analyzed yielding a correlation between yellow intensity and glucose concentration.
A similar procedure, using an unknown concentration of glucose in artificial urine, is
conducted and compared to the calibration curve to obtain the unknown value. Studies to
quantify glucose in artificial urine showed good correlation between the theoretical and
actual concentrations, as percent differences were �13.0%. An ANN was trained on the
four-channel CMYK color data from 54 �TPAD and 160 �PAD analysis sites and Pearson
correlation coefficients of R = 0.96491 and 0.9739, respectively, were obtained. The ANN
was able to correctly classify 94.4% (51 of 54 samples) and 91.2% (146 of 160 samples)
of the �TPAD and �PAD analysis sites, respectively. The development of this technology
combined with ANN should further facilitate the use of these platforms for colorimetric
analysis of other analytes.
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1 Introduction

Since its emergence in the early 1990s, the field of microflu-
idics has continued to expand due to its potential applications
in the pharmaceutical, biomedical, and chemical domains
among others [1, 2]. The size of the platforms, small sample
volume requirements, low cost, fast sampling times, portabil-
ity, durability, high sensitivity and accuracy, and low power
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consumption are a few of the advantages of the technology.
For example, current challenges of an aging population, in-
creasing healthcare costs, and the need for modern healthcare
methods and delivery to both developed and developing coun-
tries, makes microfluidics a leading technology to participate
in preventative and personalized medicine in the future [3].

In 2007, Whitesides et al. coined the term microfluidic
paper-based analytical device (�PAD) and described the first
paper-based devices [4–10]. Since then, a myriad of applica-
tions typically focused in bioanalysis, healthcare and disease
screening have been described [11–20]. A particular strength
of �PADs is their use as point-of-care (POC) diagnostic de-
vices for inexpensive colorimetric assays [21,22] and as paper-
based ELISA platforms [23–29]. Paper has been shown to be
an excellent platform for microfluidic applications since it is
thin, low cost, easy to stack, store and transport, compatible
with biological samples, and wicks aqueous liquids without
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the need of active pumping. The combination of the capa-
bilities of paper-based microfluidic systems and lateral flow
test strip technology has afforded invaluable options for con-
sumer home healthcare needs. In addition, paper-based de-
vices have a great potential for use in limited-resource settings
where a lack of medical infrastructure may exist [30].

The technology involving paper microfluidics have been
constantly evolving given its potential as POC diagnostic de-
vices. Advancements in hydrophobic barrier fabrication, de-
vice design, and �PAD application have provoked the need for
more studies on the optimization and analysis of the paper-
based devices [31]. A general trend in �PADs is the use of
a single layer of Whatman Grade 1. cellulose chromatogra-
phy paper as the platform for fabrication, where hydrophobic
barriers are patterned onto the paper to form channels that
direct fluidic flow. The fabrication of �PADs requires intri-
cate control of channel sizes, allowing efficient and even fluid
flow while requiring very small sample sizes. Wax patterning
and printing have been shown to be simple to use and highly
functional methods to fabricate �PADs [32].

When using wax as a hydrophobic material, there is a
need for heating to allow for permeation through the depth
of the paper to provide a viable barrier. The heating of wax
causes the material to spread laterally across the cellulose
paper, thus decreasing optimal channel widths. To overcome
this issue, most paper-based devices are designed with only
a few channels originating from a central circle. This lowers
the amount of possible data points collected using a single
�PAD, requiring a separate �PAD to be used for further data
collection. A multi-layered �PAD surmounts the need for
separate single-layered �PADs, as multiple �PADs can be
utilized in a single run. Moreover, enclosed channels protect
channels and reagents from external contamination while
increasing the wicking rate of fluids.

The recent increase in the use of paper as a viable plat-
form for health-related monitoring has broadened examina-
tion of other materials including thread and fabric [33–41].
Thread is an attractive material for microfluidic devices due to
its low cost, flexibility, wet-strength, and liquid wicking ability.
Furthermore, it is easily manipulated, is available in various
structural types, and is usually hydrophilic. We recently de-
tailed a microfluidic thread-based analytical device (�TAD)
to determine the activity of the enzyme acetylcholinesterase
(AChE) using colorimetric analysis [42]. Similarly, we de-
scribed a facile ELISA on thread to quantify rabbit IgG [29].

Artificial neural networks (ANNs) are useful methodolo-
gies capable of managing nonlinear and complex relations,
especially when relationships between experimental data are
unknown [43]. Similar to the way a human brain recognizes,
manages, and learns patterns in experimental data, ANNs
can learn and recognize relations between some independent
variables (i.e., input data set) and corresponding dependent
variable(s) (i.e., output parameter(s)) [44]. The processing unit
in ANNs is an artificial neuron that takes inputs and then gen-
erates an output based on associated weights of the inputs.
Neurons compute the weighted sum of all of the inputs yield-
ing an output [45]. In recent years, ANNs have been quite

complimentary to response surface methodologies (RSMs)
and have successfully been used in various applications in-
cluding image processing, medicine, environmental science,
pharmaceutics, water resources, and nanotechnology, where
statistical methods may not be efficient due to complex rela-
tions commonly observed between the data [46–52].

Herein, we describe the fabrication of and data collection
from two microfluidic devices, a microfluidic thread/paper
based analytical device (�TPAD) and 3D �PAD. By flowing
solutions of GOx, HRP, and KI through each device, a cali-
bration curve was generated for each platform. The resultant
yellow-brown color from the reaction indicates oxidation of
iodide to iodine. The devices were dried, scanned, and ana-
lyzed yielding a correlation between yellow intensity and glu-
cose concentrations. For each platform, as a proof of concept,
we also demonstrate the effectiveness of ANN fitting and clas-
sification algorithms to deduce glucose concentration based
on four-channel CMYK color data.

2 Materials and methods

2.1 Materials

Glucose oxidase (GOx) (174.9 units/mg), horseradish per-
oxidase (HRP) (179.2 units/mg), potassium iodide, sodium
acetate trihydrate, acetic acid, sodium dihydrogen phosphate
(mono), disodium phosphate (dibasic), and glucose were pur-
chased from Sigma Aldrich. GOx was prepared in phosphate
buffer (0.1 M, pH 6) and HRP was dissolved in acetate buffer
(0.2 M, pH 5.1). The GOx/HRP/KI cocktail was prepared by
mixing equal volumes of GOx and HRP, and then mixing
equal volumes of GOx/HRP solution and 0.6 M KI. Various
concentrations of glucose (0.0, 0.5, 1.0, 3.0, 4.5, 6.5, 10, 12.5
and 15.0 mM) were prepared.

Artificial urine solution (pH 6.0) was prepared by mixing
ammonium chloride (25 mM), calcium chloride (2.5 mM),
citric acid (2.0 mM), magnesium sulfate (2.0 mM), sodium
bicarbonate (25 mM), sodium chloride (90 mM), sodium sul-
fate (10 mM), uric acid (0.4 mM), disodium hydrogen phos-
phate (7.0 mM), and sodium dihydrogen phosphate (7.0 mM).
Varying concentrations of glucose (0.5, 3.0, and 5.0 mM) were
added to the artificial urine solution. White #18 100% Nylon
thread was purchased from Hobby Lobby. Scotch packaging
single sided tape was purchased from a local office supply
store. Clear polyester double-sided adhesive tape (AR90445)
was purchased from Adhesives Research. For all paper as-
pects of the platforms, 0.18 mm thick Whatman grade 1 cel-
lulose chromatography paper (GE Healthcare Life Sciences,
WA, USA) was used. Wax printing for the 3D-�PAD was
done using a Colorqube 8580 Solid Ink color printer (Xerox,
Norwalk, CT, USA). 3D-�PADs were heated on a Hotronix
Auto-Open Clam heat press (Stahl’s, Sterling Heights, MI,
USA). The outer shell apparatus was cut from a sheet of
2.25 mm thick polymethyl methacrylate (PMMA) using a LS-
1416 BossLaser CO2 laser cutter (Boss Laser, Sanford, FL,
USA). 0.13 mm thick non-adhesive polymer laminate film
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from Zeonex was used as the hydrophobic separating layer
for the two sides of the 3D-�PADs.

2.2 Microfluidic analytical device fabrication

2.2.1 �TPAD platform fabrication

The platform was fabricated using two pieces of single-sided
tape (5.4 cm x 5.4 cm), one piece of double-side tape (5.4 cm
x 5.4 cm), three pieces of nylon (2.4 cm), and hole-punched
chromatography circles (0.64 cm diameter) (Fig. 1A). A tem-
plate designed on InkScape (0.92x, The Inkscape Project,
open-source) was used to hole punch the pieces of tape and
was designed with a center circle surrounded by nine cir-
cles. The bottom layer of the single-sided tape had nine cir-
cles hole-punched. Three pieces of nylon thread were trifur-
cated and layered onto the bottom layer of tape such that the
thread would begin at the center circle and each of the tri-
furcated ends would terminate at the nine holes. The double-
sided tape layer had the center and nine circles hole-punched.
The bottom side of the double-sided tape had the nine holes
covered with pre-spotted paper circles. The chromatography
paper circles were pre-spotted with increasing glucose con-
centrations (5 �L) or with artificial urine of known glucose
concentration. The topside of the double-sided tape had the
center and nine holes covered with blank chromatography
paper circles. The top layer single-sided tape was placed on
top of the double-sided tape completing the multiplex chip
assembly.

To initiate the reaction, GOx/HRP/KI reaction cocktail
was spotted (30 �L reaction cocktail/45 seconds, 150 �L total)
onto the center chromatography circle. The reaction cocktail
flows through the center chromatography paper circle (inlet),
through the nylon thread, up the pre-spotted chromatography
paper circles, and terminates at the blank chromatography pa-
per circles where a yellow/brown color is realized, indicating
iodine production. After the cocktail (150 �L) was flowed into

the chip, it was allowed to sit for 45 s. The chip was air-dried
by blowing compressed air over the nine holes on the bot-
tom side of the chip for 5 min and the topside of the chip
scanned.

2.2.2 3D �PAD Fabrication

The 3D-�PAD was designed using Inkscape software. In the
software, circles and squares were manipulated and oriented
to create the multi-channeled �PAD chip. The channel widths
(1.0 mm) were determined based on previous studies [32]. The
backside of the 3D-�PAD cell has eight rectangular channels
(1.0 × 3.0 mm), circles midway along the channels (7.0 mm
diameter), and a square detection site (5.0 × 5.0 mm) at the
end of each channel (Fig. 1B). The 3D-�PAD design was
duplicated multiple times onto a sheet, printed, and heat
pressed (176°C, 120 s). Each sheet was reintroduced to the
wax printer and a front layer of protective wax printed onto
the surface (Fig. 1B).

The 3D-�PAD outer shell apparatus (35 × 35 mm, 6 mm
center hole) was cut with a Boss CO2 laser engraver. One edge
was secured together with tape such that a folding apparatus
was created. Laminate film was cut to size and was secured
to the inside of the shell with tape. Office supply binder clips
were used to secure the shell and create even pressure along
the edges of the �PAD during the time of reaction.

To initiate the reaction, glucose solutions (5 �L) of vary-
ing concentrations were pipetted onto the mid-channel cir-
cles of the 3D �PAD and let dry for 10 min. Once dried, the
�PADs were folded in half with the front side facing inwards
and placed into the shell with the laminate sheet separating
the two front faces of the 3D-�PAD. The hole in the laminate
film was filled with two chromatography paper hole-punched
circles to bridge the �PAD faces. Upon seating the chip prop-
erly into the PMMA shell, the platform was shut and secured
along its edge with a binder clip. The GOx/HRP cocktail was
spotted (30 �L/min for 5 min, 150 �L total) through the hole

Figure 1. (A) Depiction of the
different layers and materials
defining the �TPAD multiplex.
Left side, exploded view of the
chip. Right side, chip display-
ing the blank and the glucose
or artificial urine modified pa-
per circles. (B) Top, front (left)
and back (right) images of the
3D-�PAD Chip. Colors indicate
different wax contents; white,
green, gray and black dis-
plays non, low, medium and
complete wax opacity, respec-
tively. Bottom, photograph of
the folded 3D-�PAD inside the
PMMA holder.
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in the platform and directly onto the backside of the �PAD.
After the final spotting, the �PAD was let dry (10 min). The
squares of the chip were filled with the GOx/HRP/KI cocktail
and glucose, resulting in a brown- yellow color. The �PADs
were removed from the platform and dried evenly with air
(5 min) and scanned for colorimetric detection.

2.2.3 Microfluidic device analysis

The microfluidic devices were scanned using an Epson Per-
fection V600 scanner with a resolution of 1600 DPI in prepa-
ration for colorimetric analysis. Photoshop CS2 was used to
determine the inverse mean, or yellow intensity of each anal-
ysis site using the circular marquee tool (6.33 × 6.37 mm) for
the �TPAD, and the square marquee tool (5.00 × 5.00 mm)
for the 3D-�PAD. The data were recorded onto an Ex-
cel spreadsheet and glucose concentration versus yellow
color intensity plotted to create a concentration calibration
curve.

2.2.4 Artificial neural network design methodology

Mean 16-bit color values from each of the four color chan-
nels in the CMYK histogram were extracted into an Excel
spreadsheet using Adobe Photoshop. For each chip, the av-
erage CMYK color values from the 0 mM control test area
were then subtracted from the other test areas each yielding
four-component vectors of form � CMYKi = �� C, � M, � Y,
� K� for each test area, where � C = Ci - C0 and � CMYK0 =
�0, 0, 0, 0�. The spreadsheet used to train the neural net-
works consisted of 160 and 54 data points for the �PAD and
�TPAD, respectively.

The ANNs were implemented using the Neural Network
Toolbox (v9.1) in MATLAB R2016b (v9.1.0.441655). For each
of the two proposed chip platforms (i.e. �TPAD and �PAD),
two analyses were performed: fitting and classification. In
all cases, seventy percent of the data points were allotted for
a training sample, fifteen percent for a validation sample,
and the remaining fifteen percent for an independent testing
sample.

For fitting problems, the objective of the neural network
is to predict a concentration value given a four-component
input vector containing the test area CMYK color data. To
achieve this, a two-layer feed-forward neural network with
thirty hidden neurons (determined by trial and error to pro-
duce the most optimal results) was implemented in MAT-
LAB and trained on an input matrix of size 4 × N (where
N = dataset size; 160 for �PAD, 54 for �TPAD) consisting of
CMYK color data, and a target matrix of size 1 × N consisting
of the corresponding known concentration values. The neural
network employed a Bayesian regularization backpropagation
algorithm to train the network for 1000 epochs. After train-
ing, the solution was then deployed as a block into Simulink
7.0. One disadvantage of the fitting algorithm for this appli-
cation is that it is highly possible for the system to output a
value outside the set of known concentrations. For example,

the program may predict the concentration to be 12.38 mM
instead of 12.5 mM. To restrict the output, the neural network
block was placed in series with a custom MATLAB function
block containing a script to discretize the output to the nearest
known test strip concentration (see Supporting Information).
For instance, raw outputs of 12.38, 11.9, and 13 mM were
discretized to 12.5 mM. A custom graphical user interface
(GUI) was developed in Simulink to output the raw predic-
tion, its discretized, adjusted value, and the percent error for
each.

The performance of the ANN fitting algorithm was quan-
tified using the Pearson correlation coefficient (R), or R-value,
which provides a measure of linear dependence between two
variables. The correlation coefficient may assume any value
between -1 and 1, inclusive. R-values of -1, 0, and 1 indi-
cate perfect negative, independent, and positive correlations,
respectively. This metric was used to provide a quantifiable
measure of success for the Bayesian backpropagation algo-
rithm used to train the ANN to predict glucose concentration
based on color data.

The performance of ANNs applied to fitting problems
may be represented by scatter plots (Figs. 2A and 2B). Each
data point on the plot indicates a prediction made by the
ANN. The location of a data point along the horizontal axis
labeled “Target” indicates the “true” glucose concentration
of the analysis site, while the location along the vertical axis
labeled “Output” indicates the glucose concentration guessed
by the ANN. For an ANN with perfect predictive capability,
the “Output” values equal the “Target” values, and all data
points will reside on the “Y = T” identity line, represented
by the dotted line on the scatter plot. The Pearson correlation
coefficient for a perfect ANN is R = 1.

For classification problems, the task of a neural network
is to sort a sample into a predefined class based on a set
of associated inputs. Originally, the aim was for the ANN
to classify the data points into one of nine classes (eight
classes for �PAD platform), each corresponding to one of
the pre-spotted experimental glucose concentrations. How-
ever, it was later found that the ANN could not accurately
classify test areas at this level of resolution for this particular
color change reaction due to high cross-entropy between data
points. For this reason, the nine concentration levels were
further discretized into three classes roughly corresponding
to low, medium, and high glucose concentrations: Class 1 (0,
0.5, 1 mM), Class 2 (3, 4.5, 6.5 mM), and Class 3 (12.5, 10,
15 mM).

To achieve this, a two-layer feed-forward neural network
with sixty hidden neurons was implemented in MATLAB and
trained on an input matrix of size 4 × N consisting of CMYK
color data, and a binary target matrix of size 3 × N indicat-
ing the corresponding class. The neural network employed a
scaled conjugate gradient backpropagation algorithm to train
the network for about 20 epochs. The solution was then de-
ployed as a block into Simulink 7.0 and implemented as a
custom GUI.

The performance of the ANN classification algorithm
was expressed through confusion matrices, square tables with
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Figure 2. At the top, calibration curves from the regression plots created using the neural network fitting program for the (A) �TPAD
Multiplex Chip and B) the 3D-�PAD. At the bottom, confusion matrix neural network classification program for the C) �TPAD Multiplex
Chip and D) the 3D-�PAD Chip.

dimensions C × C (where C is the number of possible classes
into a dataset may be sorted) that represent the behavior
of a classifier. For the 3 × 3 confusion matrices shown in
Figs. 2C and 2D, the rows indicate the three “Output” classes
into which the ANN may place an analysis site, while the
columns indicate the analysis site’s corresponding true, or
“Target” class. For instance, the “57” in the cell belonging to
the first row and first column of the confusion matrix shown
in Fig. 2C indicates that the ANN classifier correctly classified
57 analysis sites belonging to Class 1 as Class 1 sites. The “3”
in the cell belonging to the second row and first column of
the confusion matrix in the same figure indicates that the
ANN classifier misclassified three analysis sites belonging to
Class 1 as Class 2 sites. The positive identification rate, or the
ratio between number of samples correctly classified and the
number of total samples N, served as a metric to quantify the
effectiveness of the classification algorithm.

3 Results and discussion

To demonstrate the efficacy of the multiplex �TPADs and
�PADs systems, glucose was used as an analyte. The glucose
assay is based on the enzymatic oxidation of iodide to iodine,

which produces the yellow-brown color (Figs. 3A, 4A). Both
microfluidic devices utilized the same analyte system with
different magnitudes of color intensity based on each design.

3.1 �TPAD detection of glucose

The multiplex �TPADs described in this study were used to
demonstrate a reaction can proceed via capillary action in a
multilayered device and after completion reaction products
can be detected and quantified in the topmost layer of the
device. In this study the glucose is oxidized to gluconic acid
and oxygen is reduced to hydrogen peroxide by GOx. Hy-
drogen peroxide is subsequently reduced to water by HRP
in association with iodide being oxidized to iodine, which
produces the yellow-brown color at the detection sites. The
enzymatic reaction occurred in the lower circular piece of
chromatography paper. A standard �TPAD chip and a sam-
ple chip were run simultaneously to obtain a calibration curve
and measure glucose in a sample. Figure 3A shows the scans
of the standard chip with increasing glucose concentrations
and of the 0.5 mM glucose sample chip. As seen from the
standard �TPAD, as the concentration of glucose increases,
the yellow-brown color also intensifies. For the sample chip,
the yellow intensity observed is about the same throughout
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Figure 3. (A) Pictures of the
�TPAD multiplex. In 1, Con-
trol chip in which differences
in color intensities was used
for analyzing subsequent sam-
ple chips. Numbers (in blue)
indicate different concentra-
tions of glucose immobilized
in the paper circles. In 2, ex-
ample of a sample chip with
paper circles modified using
a fixed concentration of artifi-
cial urine and 0.5 mM glucose.
(B) Calibration curve obtained
from the control �TPAD chip
of the inverse yellow intensity
as a function of the glucose
concentration. The calibration
curve was used to measure
unknown glucose contents in
urine samples.

Figure 4. (A) Pictures of the
3D-�PAD Chip. Top, back
view of the chip pre-spotted
with different concentrations
of glucose. Bottom, front side
of the same chip. Increas-
ing color intensities inside
the squares indicate the in-
creasing glucose concentra-
tions used in the pre-spotted
areas. (B) Calibration curve ob-
tained using the front side of
the 3D-�PAD of the inverse
yellow intensity as a function
of the glucose concentration.

since the glucose concentration is identical, indicating that
the GOx/HRP/KI cocktail spread equally into the nylon chan-
nels. Figure 3B shows one of the saturation curves produced
of the corrected inverse yellow intensities as a function of
glucose concentration. The increase in yellow intensity pro-
duced correlates with the increasing glucose concentration.
The calibration curves obtained were used to measure the
glucose concentration of the sample chip that was run simul-
taneously.

The sample �TPAD was run to examine the ability of
multiplex �TPADs to measure glucose in artificial urine.
Three artificial urine solutions with glucose concentrations
of 0.5, 3.0, and 5.0 mM were used. The sample �TPAD
provided a total of nine detection sites and the yellow in-
tensities of the nine analysis sites were averaged. Using the
Michaelis-Menten equation produced by the calibration curve
obtained from analyzing the standard chip using Photoshop,

Table 1. Comparison of known glucose concentrations to
glucose concentrations detected by analysis, with
percent difference

Known glucose
concentration (mM)

Detected
concentration (mM)

Percent
difference

0.5 0.57 ± 0.05 13.08
3.0 2.67 ± 0.23 11.64
5.0 4.87 ± 0.09 2.63

the glucose concentration of the sample chip was determined.
The observed glucose concentrations and corresponding
standard deviations are stated in Table 1. The percent dif-
ferences calculated between the actual glucose concentration
and the concentration obtained using the calibration curve in-
dicate the error associated with the detected concentrations.
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As seen from Table 1, all the percent differences were less
than or equal to 13.0%, indicating that the calibration curves
produced by the standard chips were able to measure the
glucose concentration of the sample chip precisely. The val-
ues provided in the table were obtained from running a sin-
gle sample and standard chip simultaneously. The normal
glucose concentration in urine ranges from 0.0 to 0.8 mM.
Hence, the results demonstrate that the multiplex �TPADs
yield accurate, quantitative results within the range of both a
healthy and possibly diabetic patient. The LOD for the device
was 0.5 mM.

An ANN was trained on the four-channel CMYK color
data from 54 �TPAD analysis sites to evaluate the ability
of fitting and classification machine learning algorithms to
deduce glucose concentration for a thread- and paper-based
microfluidic platform. Figure 2B shows the Pearson correla-
tion coefficient to be R = 0.96491, indicating a highly linearly
dependent relationship between the two variables, and excel-
lent ANN fitting performance. The confusion matrix shown
in Fig. 2D indicates that the ANN correctly classified 94.4%
(51 of 54 samples) of �TPAD analysis sites, indicating excel-
lent ANN classification performance. The ANN was able to
correctly identify all Class 1 analysis sites, and made no errors
distinguishing between Class 1 and Class 3 sites. Three er-
rors, each with one instance of occurrence (each accounting
for 1.9% of the total number of classifications), were made:
misclassifying a Class 2 site as a Class 1 site, a Class 3 site as
a Class 2 site, and a Class 2 site as a Class 3 site.

3.2 3D-�PAD detection of glucose

The 3D-�PAD designed for this study was created with the
goal of increasing the amount of data collected in a short pe-
riod of time. As previously explained, the oxidation of glucose
to gluconic acid and reduction of O2 to H2O2 by GOx, and
oxidation of iodide to iodine by HRP produces the yellow-
brown color observed at the analysis area pictured in Fig, 4A.
The enzymatic reaction occurred as the solutions travelled
through the chromatography paper channels into the square
detection sites. Due to the limitations of the x-y plane of a
piece of cellulose chromatography paper, the z-plane had to
be utilized in a way that would contribute to the overall com-
pact yet versatile �PAD platform. In this case, a two-sided
3D-�PAD allows a reaction to go to completion via transfer
of solution via capillary action between the two faces of the
device.

A standard �PAD chip allows for rapid detection of ana-
lyte on a lateral plane, but given the thinness of a single sheet
of paper, multiple layers of a given �PAD design could be
run simultaneously. Figure 4A shows a scan of the chip with
increasing glucose concentrations. Mentioned previously, as
glucose concentration increases, the observed yellow-brown
color also intensifies, evidenced by Fig. 4B. One advantage
to the 3D-�PAD is the optimization of the design wherein
the square analysis sites provide a homogenous mixture site.
That is, the GOx/HRP/KI cocktail spreads evenly into the

squares and the transfer of solution between the bottom and
top face of the �PAD was complete, again evidenced by the
low relative standard deviations of values. Figure 4B shows
one of the curves produced by the inverse yellow intensities
as a function of glucose concentration.

The 3D-�PAD design can theoretically be used to run
16 different concentrations of analyte, or multiple differing
concentrations of an unknown concentration. In this study,
varying concentrations (0.5, 1, 3, 4.5, 6.5, 12.5, and 15 mM)
were used. The yellow intensities of the eight analysis sites
were averaged and a curve produced. As with the �TPAD, the
LOD for the 3D-�PAD device was 0.5 mM.

An ANN was trained on the four-channel CMYK color
data from 160 �PAD analysis sites to evaluate the ability of
fitting and classification machine learning algorithms to de-
duce glucose concentration for a 3D paper-based microfluidic
platform. Figure 2A shows the Pearson correlation coefficient
was R = 0.9739, indicating a highly linearly dependent rela-
tionship between the two variables, and excellent ANN per-
formance. The confusion matrix shown in Fig. 2C indicates
that the ANN has correctly sorted 91.2% (146 of 160 samples)
of the �PAD analysis sites. The errors the ANN was most
likely to make were misclassifying a Class 2 site as a Class 1
site, which occurred in 3.1% (5 of 160 samples) of the data
points, and misclassifying a Class 3 site as a Class 2 site,
which occurred 2.5% (4 of 160 samples) of the data points.
The ANN made no errors distinguishing between Class 1 and
Class 3 sites.

4 Concluding remarks

We have described the design and fabrication of two microflu-
idic devices that were fabricated and optimized for a glucose
assay with detection of glucose concentrations ranging from
0.5 to 15 mM. The integration of the data collected from
the microfluidic devices into an ANN system utilized a deep
learning algorithm for colorimetric detection of analytes to
enzymatically detect glucose. A �TPAD and 3D-�PAD de-
vices were fabricated and a calibration curve was generated
for both systems by flowing solutions of GOx, HRP, and KI
onto the device centers. The capillary action and lateral flow
reached the glucose spots of increasing concentrations and a
clear to yellow-brown color change observed at the analysis
spot for each device. In the �TPAD chip, an unknown concen-
tration of glucose in artificial urine was tested and compared
to the calibration curve to obtain the unknown concentration
value.

We have also demonstrated the ability of a machine-
learning approach to computationally interpret the results
of thread/paper- and paper-based analytical devices.

Lapses in the ability of the ANN to form a representa-
tive and well-generalized relationship between four-channel
CMYK data as system inputs and glucose concentration as
system outputs may be attributable to the relative lack of color
variability in the observed color changes. This invariance re-
sults in high cross-entropy, limiting the pattern recognition
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capability of the ANN. However, a higher predictive reso-
lution may be attained by chemically amplifying the color
changes and training the ANN on a larger data set. Of the two
platforms analyzed, the 3D-�PAD is more practical for inte-
gration with ANN-based analytics due to the its high degree
of reproducibility and speed of production, allowing for large
training datasets to be built in short periods of time.

For point-of-care diagnostic applications, users will likely
not have access to a scanner or spectrophotometric instru-
ment to extract digital color values from the completed assay
and perform colorimetric analysis. ANNs may also be used
to standardize differing lighting conditions across multiple
assays by referencing a color calibration area on the assay
itself. This may be a white, true black, or 18% gray middle
reference card. A program that can normalize color values
may be implemented using the MATLAB Image Processing
Toolbox, among numerous well-documented methods. The
effectiveness of an ANN-based lighting normalization algo-
rithm will only increase as the system is trained on more data
points.

In many ways, the fields of microfluidics and machine
learning are complementary; inexpensive and highly repro-
ducible analytical devices can provide the large datasets
needed for ANNs to function well. The relative low cost and
ease-of-reproducibility of the microfluidic devices described
here combined with the high scalability of ANN-based algo-
rithms through smartphone applications and other software
deployment solutions make such a system ideal for rapid,
POC diagnostics.
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